Parallelizing discrete dislocation dynamics simulations on multi-core systems
نویسندگان
چکیده
Materials science simulations are among the leading applications for scientific supercomputing. Discrete dislocation dynamics (DDD) is a numerical tool used to model the plastic behavior of crystalline materials using the elastic theory of dislocations. DDD simulations require very long running times to produce meaningful scientific results. This paper presents early experiences and results on improving the running time of Micromegas, an application code for three-dimensional DDD simulations. We used open source profiling and tracing tools to analyze the behavior and performance, as well as to identify the performance bottlenecks of Micromegas. The major performance bottleneck of Micromegas, amounts to ∼68% of the total sequential run time and is parallelized using OpenMP. Evaluation and validation tests conducted on a Nehalem quad-core processor show ∼50% improvement in the simulation time for 3-D DDD over 100,000 time steps. The correctness of the scientific data produced by the parallel Micromegas are successfully validated against those of the serial version.
منابع مشابه
Early experiences and results on parallelizing discrete dislocation dynamics simulations on multi-core architectures
Materials science simulations are among the leading applications for scientific supercomputing. Discrete dislocation dynamics (DDD) is a numerical tool used to model the plastic behavior of crystalline materials using the elastic theory of dislocations. DDD simulations require very long running times to produce meaningful scientific results. This work presents early experiences and results on i...
متن کاملMultiscale modeling of dislocation-precipitate interactions in Fe: From molecular dynamics to discrete dislocations.
The stress-driven motion of dislocations in crystalline solids, and thus the ensuing plastic deformation process, is greatly influenced by the presence or absence of various pointlike defects such as precipitates or solute atoms. These defects act as obstacles for dislocation motion and hence affect the mechanical properties of the material. Here we combine molecular dynamics studies with three...
متن کاملParallel discrete molecular dynamics simulation with speculation and in-order commitment
Discrete molecular dynamics simulation (DMD) uses simplified and discretized models enabling simulations to advance by event rather than by timestep. DMD is an instance of discrete event simulation and so is difficult to scale: even in this multi-core era, all reported DMD codes are serial. In this paper we discuss the inherent difficulties of scaling DMD and present our method of parallelizing...
متن کاملEfficient parallelization of the genetic algorithm solution of traveling salesman problem on multi-core and many-core systems
Efficient parallelization of genetic algorithms (GAs) on state-of-the-art multi-threading or many-threading platforms is a challenge due to the difficulty of schedulation of hardware resources regarding the concurrency of threads. In this paper, for resolving the problem, a novel method is proposed, which parallelizes the GA by designing three concurrent kernels, each of which running some depe...
متن کاملMultiphase flow and tromp curve simulation of dense medium cyclones using Computational Fluid Dynamics
Dense Medium Cyclone is a high capacity device that is widely used in coal preparation. It is simple in design but the swirling turbulent flow, the presence of medium and coal with different density and size fraction and the presence of the air-core make the flow pattern in DMCs complex. In this article the flow pattern simulation of DMC is performed with computational fluid dynamics and Fluent...
متن کامل